Subject areas

Animal and Plant Sciences Data Management Molecular Infection Biology Microbial Ecology Marine Biology Molecular Genetics Evolutionary Biology Animal Genetics Metagenomics Computer Sciences Botany Bioinformatics Software and Workflows Plant Genetics Plant Genetics Animal Genetics Biodiversity Morphology Evolutionary Biology Botany Medical Microbiology Molecular Infection Biology Functional Genomics Agriculture Genetics and Genomics Biomedical Science Imaging Medical Microbiology Data Integration Bioinformatics Software Engineering Morphology Marine Biology
Data Release
In silico characterization of chitin deacetylase genes in the Diaphorina citri genome
Pages 1-11,  © The Author(s) 2021.

Chitin deacetylases (CDAs) are one of the least understood components of insect chitin metabolism. The partial deacetylation of chitin polymers appears to be important for the proper formation of higher order chitin structures, such as long fibers and bundles, which contribute to the integrity of the insect exoskeleton and other structures. Some CDAs may also be involved in bacterial defense. Here, we report the manual annotation of four CDA genes from the Asian citrus psyllid, Diaphorina citri, laying the groundwork for future study of these genes.

Improvements in the sequencing and assembly of plant genomes
Pages 1-10,  © The Author(s) 2021.

Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.

Data Release
Annotation of chitin biosynthesis genes in Diaphorina citri, the Asian citrus psyllid
Pages 1-12,  © The Author(s) 2021.

The polysaccharide chitin is critical for the formation of many insect structures, including the exoskeleton, and is required for normal development. Here we report the annotation of three genes from the chitin synthesis pathway in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), the vector of Huanglongbing (citrus greening disease). Most insects have two chitin synthase (CHS) genes but, like other hemipterans, D. citri has only one. In contrast, D. citri is unusual among insects in having two UDP-N-acetylglucosamine pyrophosphorylase (UAP) genes. One of the D. citri UAP genes is broadly expressed, while the other is expressed predominantly in males. Our work helps pave the way for potential utilization of these genes as pest control targets to reduce the spread of Huanglongbing.

Technical Release
DAPT: A package enabling distributed automated parameter testing
Pages 1-10,  © The Author(s) 2021.

Modern agent-based models (ABM) and other simulation models require evaluation and testing of many different parameters. Managing that testing for large scale parameter sweeps (grid searches), as well as storing simulation data, requires multiple, potentially customizable steps that may vary across simulations. Furthermore, parameter testing, processing, and analysis are slowed if simulation and processing jobs cannot be shared across teammates or computational resources. While high-performance computing (HPC) has become increasingly available, models can often be tested faster with the use of multiple computers and HPC resources. To address these issues, we created the Distributed Automated Parameter Testing (DAPT) Python package. By hosting parameters in an online (and often free) “database”, multiple individuals can run parameter sets simultaneously in a distributed fashion, enabling ad hoc crowdsourcing of computational power. Combining this with a flexible, scriptable tool set, teams can evaluate models and assess their underlying hypotheses quickly. Here, we describe DAPT and provide an example demonstrating its use.